N-methylpurine DNA glycosylase overexpression increases alkylation sensitivity by rapidly removing non-toxic 7-methylguanine adducts
نویسندگان
چکیده
Previous studies indicate that overexpression of N-methylpurine DNA glycosylase (MPG) dramatically sensitizes cells to alkylating agent-induced cytotoxicity. We recently demonstrated that this sensitivity is preceded by an increased production of AP sites and strand breaks, confirming that overexpression of MPG disrupts normal base excision repair and causes cell death through overproduction of toxic repair intermediates. Here we establish through site-directed mutagenesis that MPG-induced sensitivity to alkylation is dependent on enzyme glycosylase activity. However, in contrast to the sensitivity seen to heterogeneous alkylating agents, MPG overexpression generates no cellular sensitivity to MeOSO2(CH2)2-lexitropsin, an alkylator which exclusively induces 3-meA lesions. Indeed, MPG overexpression has been shown to increase the toxicity of alkylating agents that produce 7-meG adducts, and here we demonstrate that MPG-overexpressing cells have dramatically increased removal of 7-meG from their DNA. These data suggest that the mechanism of MPG-induced cytotoxicity involves the conversion of non-toxic 7-meG lesions into highly toxic repair intermediates. This study establishes a mechanism by which a benign DNA modification can be made toxic through the overexpression of an otherwise well-tolerated gene product, and the application of this principle could lead to improved chemotherapeutic strategies that reduce the peripheral toxicity of alkylating agents.
منابع مشابه
A novel fluorometric oligonucleotide assay to measure O( 6)-methylguanine DNA methyltransferase, methylpurine DNA glycosylase, 8-oxoguanine DNA glycosylase and abasic endonuclease activities: DNA repair status in human breast carcinoma cells overexpressing methylpurine DNA glycosylase.
DNA repair status plays a major role in mutagenesis, carcinogenesis and resistance to genotoxic agents. Because DNA repair processes involve multiple enzymatic steps, understanding cellular DNA repair status has required several assay procedures. We have developed a novel in vitro assay that allows quantitative measurement of alkylation repair via O(6)-methylguanine DNA methyltransferase (MGMT)...
متن کاملImbalancing the DNA base excision repair pathway in the mitochondria; targeting and overexpressing N-methylpurine DNA glycosylase in mitochondria leads to enhanced cell killing.
The DNA base excision repair (BER) pathway is responsible for the repair of alkylation and oxidative DNA damage. The short-patch BER pathway, beginning with the simple glycosylase N-methylpurine DNA glycosylase (MPG), is responsible for the removal of damaged bases such as 3-methyladenine and 1,N(6)-ethenoadenine from the DNA after alkylation or oxidative DNA damage. The resulting apurinic site...
متن کاملAltering DNA base excision repair: use of nuclear and mitochondrial-targeted N-methylpurine DNA glycosylase to sensitize astroglia to chemotherapeutic agents.
Primary astrocyte cultures were used to investigate the modulation of DNA repair as a tool for sensitizing astrocytes to genotoxic agents. Base excision repair (BER) is the principal mechanism by which mammalian cells repair alkylation damage to DNA and involves the processing of relatively nontoxic DNA adducts through a series of cytotoxic intermediates during the course of restoring normal DN...
متن کاملHuman methyl purine DNA glycosylase and DNA polymerase beta expression collectively predict sensitivity to temozolomide.
Overexpression of N-methylpurine DNA glycosylase (MPG) has been suggested as a possible gene therapy approach to sensitize tumor cells to the cell-killing effects of temozolomide, an imidazotetrazine-class chemotherapeutic alkylating agent. In the present study, we show that both elevated MPG expression and short hairpin RNA-mediated loss of DNA polymerase beta (Pol beta) expression in human br...
متن کاملTransient adenoviral N-methylpurine DNA glycosylase overexpression imparts chemotherapeutic sensitivity to human breast cancer cells.
In an effort to improve the efficacy of cancer chemotherapy by intervening into the cellular responses to chemotherapeutic change, we have used adenoviral overexpression of N-methylpurine DNA glycosylase (MPG or ANPG/AAG) in breast cancer cells to study its ability to imbalance base excision repair (BER) and sensitize cancer cells to alkylating agents. Our results show that MPG-overexpressing c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic Acids Research
دوره 33 شماره
صفحات -
تاریخ انتشار 2005